2.5 The Schmidt decomposition and purifications

The study of composite quantum systems are at the heart of quantum computation and quantum information. Two additional tools of great value are the *Schmidt decomposition* and *purifications*.

theorem 2.7(Schmidt decomposition) $|\psi\rangle$: pure state of a composite system, AB. $\exists |i_A\rangle$ and $|i_B\rangle$: orthogonal sts. of A and B, respectively such that

$$|\psi\rangle = \sum_{i} \lambda_{i} |i_{A}\rangle |i_{B}\rangle$$

where λ_i are non-negative real numbers satisfying $\sum_i \lambda_i^2 = 1$ known as Schmidt co-efficients.

This result is very useful.

If $|\psi\rangle$ is a pure st. of a composite system, AB, then by Schmidt decomposition

$$\rho^{A} = \sum_{i} \lambda^{2} |i_{A}\rangle \langle i_{A}|$$
$$\rho^{B} = \sum_{i} \lambda^{2} |i_{B}\rangle \langle i_{B}|$$

so, the eigenvalues of ρ^A and ρ^B are identical (λ^2) for both density operators. Many important properties of quantum system are completely determined by the eigenvalues of the reduced density operator of the system, so for a pure state of a composite system such properties will be the same for both systems.

eg) two qubits, $(|00\rangle + |01\rangle + |11\rangle)/\sqrt{3}$

$$\rho^{A} = \frac{1}{3} (2|0\rangle\langle 0| + |1\rangle\langle 1|)$$

$$\rho^{B} = \frac{1}{3} (|0\rangle\langle 0| + 2|1\rangle\langle 1|)$$

$$\operatorname{tr} \left(\left(\rho^{A}\right)^{2} \right) = \frac{1}{9} \operatorname{tr} (4|0\rangle\langle 0| + |1\rangle\langle 1|)$$

$$= \frac{1}{9} \operatorname{tr} (|0\rangle\langle 0| + 4|1\rangle\langle 1|)$$

$$= \frac{5}{9}$$

Proof

System A, B have state spaces of the same dimension. $|j\rangle$, $|k\rangle$: any fixed orthonormal bases for systems A and B

$$|\psi\rangle = \sum_{jk} a_{jk} |j\rangle |k\rangle,$$

By the singular value decomposition, a = udv, where d is a diagonal matrix with non-negative elements, and u and v are unitary matrices

$$|\psi\rangle = \sum_{ijk} u_{ji} d_{ii} v_{ik} |j\rangle |k\rangle.$$

Defining $|i_A\rangle \equiv \sum_j u_{ji}|j\rangle, |i_B\rangle \equiv \sum_k v_{ik}|k\rangle$, and $\lambda = d_{ii}$

$$|\psi\rangle = \sum_{i} \lambda_{i} |i_{A}\rangle |i_{B}\rangle$$

 $|i_A\rangle$ and $|i_B\rangle$: Schmidt bases for A and B

 λ_i : Schmidt number for the state $|\psi\rangle$. In some sense, Schmidt number is the 'amount' of entanglement between systems A and B. The Schmidt number is preserved under unitary transformations on system A or system B alone.

Purification

Suppose a system ρ^A and introduce another system, R, and define a pure state $|AR\rangle$ for the joint system AR such that $\rho^A = \operatorname{tr}_R(|AR\rangle\langle AR|)$. That is, the pure state $|AR\rangle$ reduces to ρ^A when we look at system A alone. Purification allows us to associate pure states with mixed states.

To prove that purification can be done for any state, we explain how to construct a system R and purification $|AR\rangle$ for ρ^A .

A system ρ^A has orthonormal decomposition $\rho^A = \sum_i p_i |i^A\rangle \langle i^A|$. To purify ρ^A , introduced R which has the same state space as system A, with orthonormal basis states $|i^R\rangle$, and define a pure state for the combined system

$$|AR\rangle \equiv \sum_{i} \sqrt{p_i} |i^A\rangle |i^R\rangle$$

We now calculate the reduced density operator for system A corresponding to the state $|AR\rangle$

$$\operatorname{tr}_{R}(|AR\rangle\langle AR|) = \sum_{ij} \sqrt{p_{i}p_{j}} |i^{A}\rangle\langle j^{A}|\operatorname{tr}(|i^{R}\rangle\langle j^{R}|)$$
$$= \sum_{ij} \sqrt{p_{i}p_{j}} |i^{A}\rangle\langle j^{A}|\delta_{ij}$$
$$= \sum_{i} p_{i} |i^{A}\rangle\langle i^{A}|$$
$$= \rho^{A}.$$

Thus $|AR\rangle$ is a purification of ρ^A .

The procedure used to purify a mixed state of system A is to define a pure state whose Schmidt basis for system A is just the basis in which the mixed state is diagonal, with the Schmidt coefficients being the square root of the eigenvalues of the density operator being purified.